Predictor-Corrector
Predictor-Corrector sampler for diffusion models.
This module provides an implementation of the Predictor-Corrector sampling method for diffusion models, which combines a predictor step (similar to Euler-Maruyama) with a corrector step based on Langevin dynamics.
PredictorCorrector
¶
Bases: BaseSampler
Predictor-Corrector sampler for diffusion models.
This sampler implements the Predictor-Corrector method, which alternates between a prediction step and a correction step to improve sampling quality.
Attributes:
| Name | Type | Description |
|---|---|---|
diffusion |
The diffusion model to sample from. |
|
verbose |
Whether to print progress information during sampling. |
|
corrector_steps |
Number of correction steps per prediction step. |
|
corrector_snr |
Signal-to-noise ratio for the corrector step. |
Source code in image_gen\samplers\predictor_corrector.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | |
__call__(x_T, score_model, *_, n_steps=500, seed=None, callback=None, callback_frequency=50, guidance=None, **__)
¶
Perform sampling using the predictor-corrector method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x_T
|
Tensor
|
The initial noise tensor to start sampling from. |
required |
score_model
|
Callable
|
The score model function that predicts the score. |
required |
n_steps
|
int
|
Number of sampling steps. Defaults to 500. |
500
|
seed
|
Optional[int]
|
Random seed for reproducibility. Defaults to None. |
None
|
callback
|
Optional[Callable[[Tensor, int], None]]
|
Optional function called during sampling to monitor progress. It takes the current sample and step number as inputs. Defaults to None. |
None
|
callback_frequency
|
int
|
How often to call the callback function. Defaults to 50. |
50
|
guidance
|
Optional[Callable[[Tensor, Tensor], Tensor]]
|
Optional guidance function for conditional sampling. Defaults to None. |
None
|
Returns:
| Type | Description |
|---|---|
Tensor
|
A tuple containing the final sample tensor and the final sample |
Tensor
|
tensor again (for compatibility with the base class interface). |
Source code in image_gen\samplers\predictor_corrector.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | |
__init__(diffusion, *args, verbose=True, corrector_steps=1, corrector_snr=0.15, **kwargs)
¶
Initialize the Predictor-Corrector sampler.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
diffusion
|
BaseDiffusion
|
The diffusion model to sample from. |
required |
*args
|
Any
|
Additional positional arguments. |
()
|
verbose
|
bool
|
Whether to print progress information during sampling. Defaults to True. |
True
|
corrector_steps
|
int
|
Number of correction steps per prediction step. Defaults to 1. |
1
|
corrector_snr
|
float
|
Signal-to-noise ratio for the corrector step. Controls the noise magnitude. Defaults to 0.15. |
0.15
|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Source code in image_gen\samplers\predictor_corrector.py
config()
¶
Return the configuration of the sampler.
Returns:
| Type | Description |
|---|---|
dict
|
A dictionary with the sampler's configuration parameters. |
Source code in image_gen\samplers\predictor_corrector.py
corrector_step(x_t, t, score_model, *_, **__)
¶
Perform a corrector step based on Langevin dynamics.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x_t
|
Tensor
|
Current state tensor. |
required |
t
|
Tensor
|
Current time step. |
required |
score_model
|
Callable
|
Model function that predicts the score. |
required |
Returns:
| Type | Description |
|---|---|
Tensor
|
Updated tensor after correction step. |
Source code in image_gen\samplers\predictor_corrector.py
predictor_step(x_t, t_curr, t_next, score, *args, **kwargs)
¶
Perform a predictor step (similar to Euler-Maruyama).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x_t
|
Tensor
|
Current state tensor. |
required |
t_curr
|
Tensor
|
Current time step. |
required |
t_next
|
Tensor
|
Next time step. |
required |
score
|
Tensor
|
Score estimate at current step. |
required |
*args
|
Any
|
Additional positional arguments. |
()
|
**kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Returns:
| Type | Description |
|---|---|
Tensor
|
Updated tensor after prediction step. |