ODE Probability Flow
ODE-based probability flow sampler for diffusion models.
This module provides an implementation of the Probability Flow ODE sampler for diffusion models, which is a deterministic sampling method based on the probability flow ordinary differential equation.
ODEProbabilityFlow
¶
Bases: BaseSampler
ODE-based probability flow sampler for diffusion models.
This sampler implements the probability flow ordinary differential equation (ODE) approach to sampling from diffusion models. Unlike stochastic samplers, this is a deterministic method that follows the probability flow ODE.
Source code in image_gen\samplers\ode.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | |
__call__(x_T, score_model, *_, n_steps=500, seed=None, callback=None, callback_frequency=50, guidance=None, **__)
¶
Perform sampling using the probability flow ODE method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x_T
|
Tensor
|
The initial noise tensor to start sampling from. |
required |
score_model
|
Callable
|
The score model function that predicts the score. |
required |
n_steps
|
int
|
Number of sampling steps. Defaults to 500. |
500
|
seed
|
Optional[int]
|
Random seed for reproducibility. Defaults to None. |
None
|
callback
|
Optional[Callable[[Tensor, int], None]]
|
Optional function called during sampling to monitor progress. It takes the current sample and step number as inputs. Defaults to None. |
None
|
callback_frequency
|
int
|
How often to call the callback function. Defaults to 50. |
50
|
guidance
|
Optional[Callable[[Tensor, Tensor], Tensor]]
|
Optional guidance function for conditional sampling. Defaults to None. |
None
|
Returns:
| Type | Description |
|---|---|
Tensor
|
A tuple containing the final sample tensor and the final sample |
Tensor
|
tensor again (for compatibility with the base class interface). |
Source code in image_gen\samplers\ode.py
config()
¶
Return the configuration of the sampler.
Returns:
| Type | Description |
|---|---|
dict
|
A dictionary with the sampler's configuration parameters. |